NEW SCHEME

Reg. No.

Third Semester B.E. Degree Examination, January/February 2006 EC/TE/EE/IT/ML/BM Network Analysis

Time: 3 hrs.)

(Max.Marks: 100

Note: Answer any FIVE full questions.

- (a) Three impedances are connected in delta. Obtain expressions for their star connected equivalents.
 - (b) Reduce the network shown in fig Q. 1(b) to a single voltage source in series with a resistance using source shift and source transformations.
 (6 Marks)

- (c) For the network shown in Fig Q. 1(c), write the mesh equations, for the meshes indicated, in time domain. Draw the dual network and write its node equations. (8 Marks)
- 2. (a) Find V_2 through the use of nodal analysis, of the network shown in fig Q. 2(a). Also find V_x .

Use mesh analysis to determine what value of V_2 in the network shown in fig Q 2(b) causes v=0. v is the voltage across 20Ω .

(c) For the network shown in fig Q 2(c), perform source shifts, draw a graph, select tree with branches 1, 2 and 3 and obtain tie set and cut set matrices. (8 Marks)

- 3. (a) Use Millmann's theorem to determine the voltage V_s of the network shown in Fig Q 3(a) given that $E_R=230~|_{}^{}0^0V,~E_Y=230~|_{}^{}-120^0V,~$ and $E_B=230~|_{}^{}120^0V,~$ (6 Marks)
 - (b) Prove that an alternating voltage source transfers maximum power to a load when the load impedance is the conjugate of the source impedance. (6 Marks)
 - (c) A linear time invariant network when terminated with $0R=1\Omega$, the current is $5[-45^0A]$ ii) $X_c=1\Omega$, the current is $10[-45^0A]$. Find the Thevinins equivalent of the network. What will be the current if it is terminated with $X_L=1\Omega$? (8 Marks)
- **4.** (a) A series resonant circuit includes $1\mu F$ capacitor and a resistance of 16Ω . If the band width is 500rad/sec, determine i) ω_r ii) Q and iii) L. (6 Marks)
 - (b) A two branch antiresonant circuit contains L=0.4~H and $C=40~\mu F$. Resonance is to be achieved by variation of R_L and R_C . Calculate the resonance frequency for the following cases :
 - b) $R_L = 120\Omega$, $R_C = 80\Omega$
 - ii) $R_L = 80\Omega, R_C = 0$
 - ii) $R_L=R_C=100\Omega$ (6 Marks)
 - (c) In the case of a series resonant circuit with frequency variation, obtain expressions for
 - i) ω_C at which maximum voltage occurs across C
 - ii) ω_L at which maximum voltage occurs across L and show that $\omega_L > \omega_C$ (8 Marks)
- (a) Why do we need to study initial conditions? Write the equivalent form of the elements in terms of the initial condition of the element. (6 Marks)
 - (b) A parallel R L circuit is energised by a current source of 1 A. The switch across the source is opened at t=0. Solve for v,Dv and D^2v all at t=0+ if $R=100\Omega$ and L=1H. (6 Marks)
 - (c) A series R C branch with $R=20\Omega$ and $C=1\mu F$ is shunted by an inductor of resistance 20Ω and inductance 1H. This is supplied by a D.C. source of 100V through a series resistance of 10Ω . There is a switch across 10Ω which is closed at t=0. Solve for the currents in L and C and their derivatives at t=0+. (8 Marks)
- (a) State and prove i) Initial value theorem and ii) final value theorem as applied to L
 transformation.

 (6 Marks)

eiect farks)

in Fig

when Marks)

ent of

Morks)

If the

(b) Determine the Thevinin's equivalent $V_{ab}(s)$ and $Z_{ab}(s)$ for the network shown in Fig Q. 6 (b) for zero initial conditions. (6 Marks)

- (c) The current i(t) shown in fig. Q 6(c) is impressed upon a capacitor C. What should be the value of A of the impulse so that the voltage across the C becomes zero for t>5~sec? (8 Marks)
- (a) Explain the application of convolution integral in the analysis of linear systems.
 (6 Marks)
 - (b) A network has a transfer function $H_1(s)$ and the impulse response of the system is a gate function of height 1 and spanning from 0 to 1 sec. Three of these networks are connected such that the overall transfer function is $H_3(s) = \left[H_1(s)\right]^3$. Using convolution or otherwise find the impulse response of the new system $h_3(t)$.

 (6 Marks)
 - (c) For the circuit shown in fig Q. 7(c) the switch is opened at t=0. If $L=\frac{1}{2}H$, $G=1\ mho,\ C=1F$ and V=1V, find the node voltages $v_1(t)$ and $v_2(t)$

(8 Marks)

- **8.** (a) A two port network, in terms of z parameters is said to be symmetric if $z_{11}=z_{22}$ and reciprocal if $z_{12}=z_{21}$. Obtain the corresponding conditions in terms of
 - i) h parameters
 - ii) T parameters, using the relationship between different two port parameters. (6 Marks)
 - (b) Two 2 port networks are connected in cascade. Obtain T parameters of the interconnected network in terms of the T parameters of the individual networks. (6 Marks)
 - (c) For the two port network shown in fig Q. 8(c). obtain z parameters. (8 Marks)

n of the 66 Marks) pross the 66 Marks) suctor of of 100V

ressions.

plied to L (6 Marks)

tosed at Mada)

contd... 3